Nonlinear Static and Dynamic Blind Source Separation Using Ensemble Learning

نویسندگان

  • Harri Valpola
  • Antti Honkela
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Ensemble Learning Approach to Nonlinear Dynamic Blind Source Separation Using State-Space Models

We propose a new method for learning a nonlinear dynamical state-space model in unsupervised manner. The proposed method can be viewed as a nonlinear dynamic generalization of standard linear blind source separation (BSS) or independent component analysis (ICA). Using ensemble learning, the method finds a nonlinear dynamical process which can explain the observations. The nonlinearities are mod...

متن کامل

Nonlinear Blind Source Separation by Variational Bayesian Learning

Blind separation of sources from their linear mixtures is a well understood problem. However, if the mixtures are nonlinear, this problem becomes generally very difficult. This is because both the nonlinear mapping and the underlying sources must be learned from the data in a blind manner, and the problem is highly ill-posed without a suitable regularization. In our approach, multilayer percept...

متن کامل

Blind Signal Separation Using an Extended Infomax Algorithm

The Infomax algorithm is a popular method in blind source separation problem. In this article an extension of the Infomax algorithm is proposed that is able to separate mixed signals with any sub- or super-Gaussian distributions. This ability is the results of using two different nonlinear functions and new coefficients in the learning rule. In this paper we show how we can use the distribution...

متن کامل

Blind Signal Separation Using an Extended Infomax Algorithm

The Infomax algorithm is a popular method in blind source separation problem. In this article an extension of the Infomax algorithm is proposed that is able to separate mixed signals with any sub- or super-Gaussian distributions. This ability is the results of using two different nonlinear functions and new coefficients in the learning rule. In this paper we show how we can use the distribution...

متن کامل

Blind Source Separation and Independent Component Analysis: A Review

Blind source separation (BSS) and independent component analysis (ICA) are generally based on a wide class of unsupervised learning algorithms and they found potential applications in many areas from engineering to neuroscience. A recent trend in BSS is to consider problems in the framework of matrix factorization or more general signals decomposition with probabilistic generative and tree stru...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001